郝曉地:芬蘭某污水處理廠的能源與資源回收方式及其碳排放核算
全康環(huán)保:本期編輯推薦欄目,為大家?guī)肀本┙ㄖ髮W(xué)郝曉地教授發(fā)表在《環(huán)境工程學(xué)報(bào)》2021年第9期的論文《污水處理廠的能源與資源回收方式及其碳排放核算:以芬蘭Kakolanm?ki污水處理廠為例》。
芬蘭舊都圖爾庫市(Turku)為芬蘭第二大海港和重要工業(yè)基地。市區(qū)面積24 km2,城市人口24萬人,計(jì)劃至2029年全面實(shí)現(xiàn)碳中和目標(biāo)。該市Kakolanm?ki污水處理廠為能源利用和熱能回收結(jié)合的典型案例。
1 Kakolanm?ki污水處理廠的工藝流程
圖爾庫市污水處理有限公司(Turun seudun puhdistamo Oy)將一處位于地下的廢棄巖石場改造成為Kakolanm?ki地下式污水處理廠,于2009年1月1日建成并投入運(yùn)行。目前,該廠承擔(dān)了圖爾庫市及其周邊14個城鎮(zhèn)的市政污水及其工業(yè)廢水處理,服務(wù)人口近30萬人。該廠平均進(jìn)水量為89 280 m3×d-1,2020年污水處理總量達(dá)32 587 333 m3?a-1。該污水處理廠運(yùn)行穩(wěn)定,平均進(jìn)出水水質(zhì)指標(biāo)全部達(dá)到當(dāng)?shù)貥?biāo)準(zhǔn)(見表1)。
Kakolanm?ki污水處理廠處理工藝主要包括機(jī)械、化學(xué)和生物處理3個單元,有4條平行處理線,水處理流程如圖1所示。
1)初級與一級處理。主要包括粗/細(xì)格柵、沉砂池、初沉池。進(jìn)水在通過粗格柵后即投加硫酸亞鐵進(jìn)行除磷。后續(xù)水流離開生物池進(jìn)入二沉池時也會再投加硫酸亞鐵,使得 TP去除率高達(dá)99%。
2)生物處理。生物處理段采用傳統(tǒng)活性污泥法缺/好氧工藝(A/O)。實(shí)際運(yùn)行中,進(jìn)水亦可跨越初沉池直接引入曝氣池,以獲得充足的碳源,并根據(jù)碳源需求調(diào)整跨越初沉池直接進(jìn)入曝氣池的水量。
3)深度處理。二沉池出水通過升流慢速砂濾池進(jìn)行深層過濾。過濾凈化后的出水直接排入附近港口海域。
4)旁路水處理單元。為應(yīng)對污水處理廠在融雪期間和夏季暴雨期的洪峰流量,設(shè)置了2條由Actiflo?裝置組成旁路水處理單元。這是一種緊湊的超高速澄清工藝,具有沉降速率高、停留時間短、整體占地面積小等優(yōu)點(diǎn)。
2 Kakolanm?ki污水處理廠的能源回收模式及能量平衡核算
2020年,Kakolanm?ki污水處理廠綜合能耗為35 GWh×a-1,共產(chǎn)能225 GWh×a-1,即產(chǎn)能已超過能耗的6倍。
2.1 化學(xué)能的回收
2020年,該廠共輸送37 871.5 t?a-1脫水污泥至Gasum沼氣處理廠進(jìn)行厭氧消化處理。產(chǎn)生沼氣經(jīng)CHP用于該地區(qū)供暖和電力。部分處理后的污泥被加工為肥料制劑,或用作土地改良劑。
該廠的厭氧消化產(chǎn)能達(dá)到21.9 GWh×a-1,而處理污泥運(yùn)行耗能(包括污泥運(yùn)輸)為14.2 GWh×a-1。即該廠污泥產(chǎn)沼氣加CHP過程產(chǎn)生的能量足夠維持污泥處理加熱、攪拌及污泥運(yùn)輸?shù)冗^程的消耗,且尚有一定能量盈余(7.7 GWh×a-1)。
2.2 熱能的回收
Kakolanm?ki污水處理廠從污水余溫?zé)崮芑厥盏臒崃靠上蛲夤?,為?dāng)?shù)亟?5 000戶家庭集中供暖(平均約200 GWh×a-1,占圖爾庫市供熱量的14%),夏季用于區(qū)域制冷(平均約25 GWh×a-1,占該區(qū)域制冷量的90%)。
Kakolanm?ki污水處理廠的熱能回收由位于地下巖洞廠區(qū)內(nèi)的水源熱泵交換站完成,以該廠二級出水為熱源回收余溫?zé)崮埽瑸閺S區(qū)和周邊地區(qū)供熱(冬季工作9個月,服務(wù)人口大于整個城市人口的10%)和制冷(四季常開,但集中于夏季3個月,為周邊部分醫(yī)院、商場、寫字樓服務(wù))。
由于還需對當(dāng)?shù)貛讉€醫(yī)院,以及商場和寫字樓持續(xù)供冷,熱泵旁配備了一個17 000 m3蓄冷水箱,通過水蓄冷技術(shù)(cold water accumulator,CWA)儲存熱交換產(chǎn)生的部分冷卻水,用于平衡供冷需求高峰時的波動。
取平均COP(能效比)為3.7、平均提取溫差8 ℃,熱交換水量取實(shí)際提取出水量為2×107 m3(按年總出水量61%計(jì))。計(jì)算結(jié)果得出理論熱能回收潛能為183.9 GWh×a-1,與該廠熱泵站輸出實(shí)際熱能179.0 GWh×a-1基本吻合,足以證明該廠熱能利用效率之高。
2.3 能量平衡
由于2020年該廠污水處理單元能耗為12.76 GWh×a-1,根據(jù)年處理污水量計(jì)算,即污水處理工藝的單位電耗為0.39 kWh×m-3。
回收余溫?zé)崮苡靡怨?制冷能量的占產(chǎn)能的比例最大,近90%,為產(chǎn)生能量的主要來源;而污泥厭氧消化的產(chǎn)能占比不到10%,雖可滿足全廠運(yùn)行能耗的62%,但意味著僅靠污泥厭氧消化產(chǎn)還難以實(shí)現(xiàn)能源中和運(yùn)行的目標(biāo)。因此,有效開發(fā)利用污水余溫?zé)崮艽_實(shí)是污水處理廠實(shí)現(xiàn)能源回收的關(guān)鍵。
2.4 能量回收的優(yōu)勢
1)Kakolanm?ki污水處理廠位于圖爾庫市中心,出水回收余熱可直接接入圖爾庫市完善的熱力管網(wǎng),用于周邊住宅區(qū)集中供暖、制冷。輸送熱損耗降至最低。更重要的是,供熱使用后的回水再循環(huán)回?zé)岜糜糜跓峤粨Q加熱,而未直接排水,使得熱利用效率倍增。
2)熱泵提取溫差大(平均為5~10 ℃)使其低品位熱能利用率高。芬蘭冬季嚴(yán)寒漫長,夏季溫和短暫,平均提取溫差達(dá)8 ℃。
3)配置2臺unitop 50FY集中式大型熱泵使供熱系統(tǒng)中余熱利用效率較高。供熱端輸出熱水可達(dá)90 ℃。這種集中式大型熱泵相較于分散式小型熱泵系統(tǒng)的運(yùn)營成本更低、供熱效率更高。
4)政府與企業(yè)協(xié)同參與保障了余熱回收項(xiàng)目的實(shí)施。
3 對Kakolanm?ki污水處理廠的碳足跡衡算
3.1 碳排放量
――直接碳排
表5為Kakolanm?ki污水處理廠氣體排放監(jiān)測統(tǒng)計(jì)數(shù)值。其中二氧化碳(CO2)、甲烷(CH4)為污水處理廠直接碳排的主要貢獻(xiàn)者。
――間接碳排
根據(jù)當(dāng)?shù)靥贾泻驼?,Kakolanm?ki污水處理廠的運(yùn)營、TSE熱泵站和Gasum沼氣廠處理污泥用電均購買自清潔能源生產(chǎn)電力,且污泥運(yùn)輸燃料為污泥厭氧消化生產(chǎn)的沼氣。因此,將污水處理廠運(yùn)行電耗等間接碳排放計(jì)為零。
另外,為實(shí)現(xiàn)碳減排,該廠自2012年開始將原先投加的氫氧化鈣改為碳酸鈣,使得因藥劑核算得到的CO2間接排放量降為原來的1%,大大降低了間接碳排。
赫爾辛基環(huán)境服務(wù)機(jī)構(gòu)(Helsingin seudun ymp?rist?palvelut, HSY)監(jiān)測結(jié)果表明,Kakolanm?ki污水處理廠2020年全年實(shí)際總碳排放量(以CO2當(dāng)量計(jì))為10 712 t,各部分碳排放量明細(xì)見表6。
3.2 碳減排量
Kakolanm?ki污水處理廠主要通過出水余熱回收及厭氧消化回收熱/電實(shí)現(xiàn)碳減排(見表7)。Kakolanm?ki污水處理廠回收熱能與化學(xué)能所產(chǎn)生的碳減排效益(以CO2當(dāng)量計(jì))為-35 642.9 t?a-1。
3.3 碳中和評價
該廠2020年實(shí)際碳排放量(以CO2當(dāng)量計(jì))為10 712 t?a-1,而碳減排量(以CO2當(dāng)量計(jì))達(dá)-35 643 t?a-1。累計(jì)-24 931 t?a-1可交易碳匯額(以CO2當(dāng)量計(jì))。
碳中和與能源回收的概念常常被混為一談,而分析此案例可知,該污水廠實(shí)現(xiàn)碳中和是依靠TSE熱泵站回收熱能及其貢獻(xiàn)的碳匯,并非依靠污水處理工藝實(shí)現(xiàn)的能源回收。因此,在對國內(nèi)污水處理廠運(yùn)行進(jìn)行碳中和或能源回收評價時,不應(yīng)把兩者簡單的等同起來。
Kakolanm?ki污水處理廠的案例也進(jìn)一步表明TSE熱泵站回收的熱能貢獻(xiàn)占比巨大,實(shí)現(xiàn)了該廠的能源回收,同時產(chǎn)生的巨大碳匯使得該廠的碳排放為負(fù)值。
4 結(jié)語
由芬蘭Kakolanm?ki污水處理廠運(yùn)行實(shí)踐表明,污水處理廠實(shí)現(xiàn)碳中和運(yùn)行的關(guān)鍵在于出水中大量余溫?zé)崮艿幕厥?,這點(diǎn)經(jīng)驗(yàn)值得借鑒。由此可知,國內(nèi)污水處理廠采用傳統(tǒng)污泥厭氧消化工藝很難實(shí)現(xiàn)能源回收及碳中和運(yùn)行。例如,北京高碑店污水處理廠數(shù)據(jù)表明,該廠全年可提取平均溫差為4℃,流量為339×106 m3?a-1,說明其理論潛熱為Kakolanm?ki污水處理廠的8倍。因此,應(yīng)充分認(rèn)識并合理利用污水余溫?zé)徇@一體量巨大的低品位能源,合理設(shè)置其回收利用方式(冬季為周邊地區(qū)供暖等),并協(xié)調(diào)市政部門與各行業(yè)的運(yùn)營,則可使污水處理廠實(shí)現(xiàn)能源回收及碳中和運(yùn)行。希望通過分析芬蘭Kakolanm?ki污水處理廠的案例,為國內(nèi)學(xué)術(shù)界提供參考。
作者簡介
郝曉地,北京建筑大學(xué)講席教授,中-荷未來污水處理技術(shù)研發(fā)中心負(fù)責(zé)人、環(huán)境與能源學(xué)院市政工程系學(xué)科學(xué)術(shù)帶頭人。2001年10月獲荷蘭代爾夫特理工大學(xué)博士學(xué)位,同年12月通過北京市“綠色通道”人才計(jì)劃引進(jìn)至我校工作。目前擔(dān)任水處理領(lǐng)域頂尖期刊《Water Research》區(qū)域主編(Editor)。研究領(lǐng)域?qū)W⒂谖鬯幚硖贾泻图夹g(shù)集成,可持續(xù)污水處理技術(shù)研發(fā),擅長污水脫氮除磷及其模擬技術(shù)、污水處理資源化技術(shù),著有《藍(lán)色經(jīng)濟(jì)下的水技術(shù)策略》、《污水處理碳中和技術(shù)》、《可持續(xù)污水-廢物處理技術(shù)》、《磷回收概觀與磷回收技術(shù)》等著作。截止目前,承擔(dān)了8項(xiàng)國家級項(xiàng)目和十幾項(xiàng)省部級及橫向項(xiàng)目;發(fā)表論文近300篇,其中國際刊物發(fā)表90篇。2020年美國斯坦福大學(xué)(Stanford University)發(fā)布了世界排名前2%科學(xué)家排行榜(World’s Top 2% Scientists 2020),郝曉地教授入選環(huán)境科學(xué)領(lǐng)域榜單。